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Goal

Predict accurate stress and strain (slip) fields at the grainscale for realistic
microstructures subject to cyclic loading.

Key phenomena that should be captured by the model:
• Geometric effects (grain structure)

• Texture effects (orientations)

• Material hardening

• Particle effects

• Damage accumulation (irreversible slip)

Methodology

Methodology focuses on the modeling of grain-scale mechanics and includes
development of a constitutive model for crystal plasticityand a finite element
formulation for polycrystals. The constitutive model is informed by experi-
mental observations and is based on underlying phenomena.

Constitutive Model

A crystal elasto-viscoplastic model is employed to capturethe response of Al
7075-T651.

Decomposition of the deformation
gradient into elastic and plastic

parts.

F = eF pF

Velocity gradient given in terms of
the slip rate on each slip system.
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Plastic Slip Model

The crystal plasticity model captures slip-system activity and the interaction
of dislocations with precipitates (Orowan looping).

A power law relates rate of shearing on slip systems to resolved shear stress.
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Evolution of resistance to plastic slip (hardening) is based on the Orowan
looping mechanism.1–3
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Finite Element Formulation

The finite element implementation allows for the modeling ofrealistic grain
structures. A three-dimensional formulation with additional pressure variable
is utilized for stability.

Governing equations:
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Corresponding weak forms (total Lagrangian) with interpolation functions:
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Linearized equations:

Kriαjβ ∆ūjβ + Griαϕ ∆p̄ϕ = f ext
iα − f int

iα (ūr, p̄r)

Hrρjβ ∆ūjβ + Mr
ρϕ ∆p̄ϕ = 0 − hρ (ūr, p̄r)

Discontinuous interpolations for̄pϕ allow for a∆p̄ solution on the element level:
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Implementation

Constitutive model and finite-element formulation were implemented in C++.

Key features of the formulation:
• Finite strain

• Stable mixed displacement/pressure formulation

• State update routine for elasto-viscoplastic crystal constitutive model

• Consistent tangent formulation for fast convergence

Finite-element driver:
• Utilizes MPICH for parallel processing

• PETSc software package used for solving global system of equations

Calibration Results

The crystal plasticity model was calibrated against monotonic and cyclic ex-
perimental data (Mississippi State, Northrop-Grumman).

MODEL PARAMETERS FORAL 7075

m 0.005 gs 250 MPa
go 220 MPa µ 28.3 GPa
γ̇o 1.0 s−1 λ 60.9 GPa
Go 120 MPa η 5.1 GPa

Results

Finite-element analysis of a polycrystal with an embedded particle was car-
ried out using two different sets of grain orientations. Theparticle was mod-
eled as linear elastic. Results show the influence of grain orientation on ma-
terial response.
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A series of simulations on a single crystal with an embedded particle show a
relationship between grain orientation and plastic slip accumulation.
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