Real Time Optofluidic Microscopy

Tamer Elkhatib, Rena Huang and Khaled Salama Electrical, Computer and Systems Engineering

What is OFM?

OptoFluidic Microscopy (OFM) is a new imaging technique that enables high resolution imaging of biological samples flowing in a microfluidic channel without using any bulky optics (lenses). OFM promises for a wide range of applications such as rapid blood cells monitoring and rapid detection of very tiny worms in fluids.

Principles of OFM Imaging

OFM Imaging is a form of contact imaging. However, it offers higher resolution for the following reasons:

- > Relative motion between sample and image sensor.
- > Utilization of linear nanoholes array.

Real Time OFM Design

- ➤ We utilize a 2D nanoholes array in a special structure that contains multiple repetition distance along sample's flow direction.
- ➤ We utilize a CMOS image sensor with a non regular 2D pixel array and small pixel size to match with the 2D nanoholes array.

Design

- > We utilize a 2D nanoholes array in a special structure that contains multiple repetition distance along sample's flow direction.
- ➤ We utilize a CMOS image sensor with a non regular 2D pixel array and small pixel size to match with the 2D nanoholes array.

Simulation Results

OFM Design	Scan Time	Scan Distance	Frame Rate
First OFM Design (pixel's size of $5 \times 5 \mu m^2$)	830 ms	250 μm	NA
Enhanced OFM Design (pixel's size of 5×5μm²)	130 ms	40 μm	7 frames/sec
Enhanced OFM Design (pixel's size of 2.4×2.4µm²)	32 ms	9.6 μm	30 frames/sec

Hole Radius (nm)	Transmitted cross section (μm^2)	
200	0.1633	
250	0.233	
300	0.302	
350	0.37	
400	0.462	

Nanohole Transmission

Feasibility

Signal to Noise Ratio

