\[\dot{\lambda}^T = -\frac{\partial H}{\partial x} = -\lambda^T \frac{\partial f}{\partial x} - \frac{\partial L}{\partial x}, \quad (2.8.9) \]

\[\lambda^T(t_f) = \left(\frac{\partial \Phi}{\partial x} \right)_{t=t_f} = \left(\frac{\partial \Phi}{\partial x} + \nu^T \frac{\partial \psi}{\partial x} \right)_{t=t_f}, \quad (2.8.10) \]

\[\left(\frac{\partial \Phi}{\partial t} + L + \lambda^T \dot{x} \right)_{t=t_f} = \left(\frac{d\Phi}{dt} + L \right)_{t=t_f} = 0, \quad (2.8.11) \]

where

\[\frac{d\Phi}{dt} = \frac{\partial \Phi}{\partial t} + \frac{\partial \Phi}{\partial x} \dot{x}. \]

As a result of this choice of \(\lambda(t) \), (2.8.8) is simplified to

\[dJ = \int_{t_0}^{t_f} \frac{\partial H}{\partial u} \delta u \, dt + \lambda^T(t_o) \delta x(t_o) - H(t_o) \, dt_o. \quad (2.8.12) \]

Clearly, as before, \(\lambda^T(t_o) \) is the influence vector on \(J \) of changes in initial conditions \(\delta x(t_o) \), while \(\partial H/\partial u \) is a set of impulse-response functions indicating how \(J \) would change as a result of unit impulses in the controls at any point in the interval \(t_o \leq t \leq t_f \).

For a stationary value of \(J \), clearly, we have

\[\frac{\partial H}{\partial u} = \lambda^T \frac{\partial f}{\partial u} + \frac{\partial L}{\partial u} = 0, \quad t_o \leq t \leq t_f, \quad (2.8.13) \]

and if a component \(x_k(t_o) \) is not specified, we have \(\lambda_k(t_o) = 0 \).

For minimum time, \(t_f - t_o \), we may let \(\phi[x(t_f) t_f] = 0 \) and \(L = 1 \), so that condition (2.8.11) becomes

\[\left(\frac{d\Phi}{dt} + 1 \right)_{t=t_f} = 0. \quad (2.8.14) \]

As in Section 2.6, the \(q \) constants \(\nu \) must be determined to satisfy the terminal constraints (2.8.2). The condition (2.8.14) is the extra condition needed to determine the final time \(t_f \).

In summary, a set of necessary conditions for \(J \) to have a stationary value is

\[\dot{x} = f(x,u,t) \quad (2.8.15) \]

\[\dot{\lambda} = -\left(\frac{\partial H}{\partial x} \right)^T = -\left(\frac{\partial f}{\partial x} \right)^T \lambda - \left(\frac{\partial L}{\partial x} \right)^T \quad (2.8.16) \]

\[\text{†An argument regarding admissibility, similar to the one made in Section 2.7, must be made to justify (2.8.13).} \]
\[0 = \left(\frac{\partial H}{\partial u} \right)^T = \left(\frac{\partial f}{\partial u} \right)^T \lambda + \left(\frac{\partial L}{\partial u} \right)^T \quad (2.8.17) \]

\(x_k(t_o) \) given, or \(\lambda_k(t_o) = 0 \) \quad (2.8.18)

\[\lambda(t_f) = \left(\frac{\partial \phi}{\partial x} + \nu^T \frac{\partial \psi}{\partial x} \right)^T_{t=t_f} \quad (2.8.19) \]

\[\Omega = \left[\frac{\partial \phi}{\partial t} + \nu^T \frac{\partial \psi}{\partial t} + \left(\frac{\partial \phi}{\partial x} + \nu^T \frac{\partial \psi}{\partial x} \right)^T f + L \right]_{t=t_f} = 0 \quad (2.8.20) \]

\[\psi[x(t_f)t_f] = 0 \quad (2.8.21) \]

The optimality condition (2.8.17) determines the \(m \)-vector \(u(t) \). The solution to the \(2n \) differential equations (2.8.15) and (2.8.16) and the choice of the \(q + 1 \) parameters \(\nu \) and \(t_f \) are determined by the \(2n + 1 + q \) boundary conditions (2.8.18)–(2.8.21). Needless to say, this boundary-value problem is, in general, not very easy to solve.

Notice, however, that if we were to specify \(\nu \) instead of \(\psi \), and \(t_f \) instead of \(\Omega \), (2.8.18) and (2.8.19) provide \(2n \) boundary conditions for a fixed-terminal-time, two-point boundary-value problem of order \(2n \). By changing values of \(\nu \) and \(t_f \), it may be possible to bring \(\psi \) and \(\Omega \) to zero at \(t = t_f \) (see Chapter 7, Section 3).